高中数学学好数列的方法
来源:学大教育 时间:2014-01-08 19:56:44
高中数学学好数列的方法,同学们知道吗。我非常希望大家在学习数学的时候,了解什么是同学们学习的重点和难点。然后把这些问题加以重点改进。就比如说,同学们在高中数学里面接触到的数列问题。其实就是同学们在学习高中数学时候必须要特别注意学习的一个问题和重点。
求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
文中我们提到的这些学习方法大家觉得怎么样呢,你们是不是能够掌握呢。还是你们自己有更好的学习方法呢,希望大家记住高中数学学好数列的方法。
热门资讯
-
适合女生报考的几大专业,稳定体面还有钱你怎么看
2018-11-08 -
★2019年成都中小学生寒假放假时间
2018-11-07 -
2018-2019学年四川高中学业水平考试科目及补考时间安排
2018-11-07 -
★2018年四川大学自主选拔笔试答卷参考
2018-11-06 -
★2018年电子科技大学自主选拔笔试答卷参考
2018-11-04 -
★2018年西南财经大学自主选拔笔试答卷参考
2018-11-04 -
★2018年西南交通大学自主选拔笔试答卷参考
2018-11-04 -
★2018年四川农业大学自主选拔笔试答卷参考
2018-11-04 -
高考生报考关于复读和专科怎样决择
2018-11-02
热门问题
-
青岛高二学生去学大教育补习怎么样?
2021-09-03 -
秦皇岛高二学生英语差如何能进步?
2021-09-03 -
乌海初三化学成绩差有必要补习吗?
2021-08-13 -
兰州初中生报假期班有什么效果?
2021-06-25 -
深圳学大教育辅导班的费用贵吗?
2021-06-25 -
太原高中生从几个方面选择托管班?
2021-06-18 -
中小学辅导机构哪家比较好?
2021-06-18 -
小升初数学学习技巧有哪些?
2021-06-04